CXV.-Differential Potentiometric Titration. Part I. Simple Method (Method I). By Bernard Cavanagh.

The potential of a suitable electrode dipping into a titrated solution has been used for the detection of the end-point according to two distinct principles. The more obvious principle, that a particular value of the potential marks the end-point, came into use comparatively recently with the methods of Pinkhof, Treadwell, and Müller (Müller, " Electrometrische Massanalyse," 4te Auf., Berlin; see also Cavanagh, J., 1927, 2207). In earlier methods the end-
point was detected by a rapid change in the potential, or, more precisely, by a maximum in the value of $\Delta E / \Delta M$ (where E is the potential, and M the amount of reagent used). This "differential" indication is intrinsically less sensitive than the other, but has the advantage at present of wider application. Moreover, in some of the cases where the more convenient "absolute" principle is applicable, the exact determination of the particular potential which marks the end-point depends ultimately on the use of the differential principle.

The methods described in this and the following paper depend upon a broader conception of the differential principle and, while retaining the advantage of wide applicability, appear to be an improvement upon the usual methods, both in convenience and in precision. Instead of the customary process of making a large number of small additions of reagent with corresponding potential measurements in order to detect the maximum value of $\Delta E / \Delta M$, it has been found possible to determine the result of the titration with higher precision from two or three measurements of the potential, corresponding to one or two large additions of the reagent, without necessarily finishing the titration in the ordinary sense. Indeed the simple method now described depends on the assumption that the added reagent reacts completely with the titrated solution, which implies that the end-point is not quite reached. This sets a limit to the absolute precision attainable by this method with given electrodes. For example, in the titration of a chloride by means of silver nitrate, if the electrodes are trustworthy as regards constancy to ± 0.25 millivolt, so that the change of potential is defined to ± 0.5 millivolt, the maximum absolute precision is about one-seventh of the solubility of silver chloride, i.e., about $\pm 0 \cdot 2 \%$ in the titration of an $N / 1000$ solution. About five times this degree of absolute precision is obtainable, with electrodes of the same constancy, by the use of methods II and III which take account of the incompleteness of the reaction in the neighbourhood of the end-point (see Part II, following paper).

1. Principle of Method I.-The potential of a reversible electrode dipping into a solution of the corresponding (univalent) ion, concentration c, is given by the formula

$$
\begin{equation*}
E=\text { constant }+R T / F \cdot \log c \gamma \tag{l}
\end{equation*}
$$

where γ is the activity coefficient of the ion. Suppose this ion is to be titrated by means of a standard reagent of normality n, and that the solution is chemically equivalent to M_{0} c.c. of the reagent, so that the object of the titration is to determine M_{0}. If the volume
of the solution is V_{0} c.c., the concentration c is equal to $n M_{0} / V_{0}$, and the initial potential of the electrode is

$$
\begin{equation*}
E_{0}=\mathrm{constant}+R T / F \cdot \log n M_{0} \gamma_{0} / V_{0} . \tag{2}
\end{equation*}
$$

Suppose now that any quantity, m c.c. (less than M_{0}) of the reagent is added to the solution, reacting completely. The solution is now equivalent to $\left(M_{0}-m\right)$ c.c., and the volume is increased to $\left(V_{0}+m\right)$ c.c. The potential of the electrode will therefore be

$$
\begin{equation*}
E=\mathrm{constant}+R T / F \cdot \log n M \gamma / V \tag{3}
\end{equation*}
$$

where $M=\left(M_{0}-m\right), V=\left(V_{0}+m\right)$, and γ is the activity coefficient under the changed conditions. The potential change, ε, due to the addition of m c.c. of reagent is therefore

$$
\begin{align*}
\varepsilon & =R T / F \cdot \log n M_{0} \gamma_{0} / V_{0}-R T / F \cdot \log n M_{\gamma} / V . \tag{4}\\
& =R T / F \cdot \log M_{0} \gamma_{0} / V_{0}-R T / F \cdot \log M_{\gamma} / V . \tag{5}
\end{align*}
$$

As a first approximation we can put $\gamma_{0}=\gamma$, and if m is assuned to be negligibly small in comparison with V_{0}, we can put $V=V_{0}$; then

$$
\begin{equation*}
\varepsilon=R T / F \cdot \log M_{0} / M=R T / F \cdot \log (1+m / M) \tag{6}
\end{equation*}
$$

Thus, at constant temperature, ε is a function of m / M; and conversely, the ratio M / m is a function of ε; explicitly (see Table I)

$$
\begin{equation*}
M / m=f(\varepsilon)=\frac{1}{2}(\operatorname{coth} F \varepsilon 2 R T-1) . \tag{7}
\end{equation*}
$$

Thus the measurement of a single potential change (ε), produced by the addition of the arbitrary quantity of reagent (m c.c.) suffices with the aid of Table I to determine M, and therefore M_{0}, the result of the titration.
2. Correction for the Changing Volume of the Solution, and for Change in the Activity Coefficient.-The foregoing approximations can be dispensed with, however, for ε (equation 5) can be divided into three additive parts,
where

$$
\begin{equation*}
\varepsilon=\varepsilon_{m}+\varepsilon_{v}-\varepsilon_{\nu} \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& \varepsilon_{m}=R T / F \cdot \log M_{0} / M=R T / F \cdot \log (1+m / M) . \tag{9}\\
& \varepsilon_{v}=R T / F \cdot \log V / V_{0}=R T / F \cdot \log \left(1+m / V_{0}\right) . \tag{10}\\
& \varepsilon_{\nu}=R T / F \cdot \log \gamma / \gamma_{0}=R T / F \cdot \log \left[1+\left(\gamma-\gamma_{0}\right) / \gamma_{0}\right] . \tag{ll}
\end{align*}
$$

and comparison with equations (5) and (6) shows that

$$
\begin{align*}
M / m & =f\left(\varepsilon_{m}\right)=f\left(\varepsilon-\varepsilon_{v}+\varepsilon_{\gamma}\right) \tag{12}\\
V_{0} / m & =f\left(\varepsilon_{v}\right) \tag{13}\\
\gamma_{0} /\left(\gamma-\gamma_{0}\right) & =f\left(\varepsilon_{\gamma}\right) \tag{14}
\end{align*} \quad \cdot \quad \cdot \cdot \cdot \cdot \cdot \cdot \cdot .
$$

Thus M / m can be obtained from ε_{m} exactly as (in neglecting m and $\gamma-\gamma_{\mathbf{F} F}$) it was obtained from ε, and the "corrections," ε_{v} and ε_{ν},
can be estimated by using Table I in the inverse way-as in finding an antilogarithm from a table of logarithms. (But see also sections 11 and 12.)

The activity coefficient of an ion in a mixed salt solution depends, to a first approximation, on the "ionic strength" of the whole solution (see Lewis and Randall, "Thermodynamics," McGraw-Hill, New York), which may be defined as " half the sum of the equivalent concentrations of all the ions present multiplied respectively by their valencies." In the course of a titration, one ion is gradually substituted for another in the titrated solution, while at the same time the volume of the solution is increased. When the "exchanged" ions are of the same valency (as in the titration of halides by means of silver nitrate, or of acids by sodium hydroxide), the ionic strength changes only on account of the increasing volume, to which it is inversely proportional, and even if the volume is doubled the relative change in γ is only $2-4 \%$. The corresponding value of ε_{γ} is therefore less than 1 millivolt-generally much less. When, as in titration with barium hydroxide, a bivalent ion is being substituted for a univalent, the effect of the increasing volume upon the ionic strength of the solution is partly or wholly counterbalanced, and ε_{γ} is still smaller. Thus, ε_{γ} is almost always negligible, so that (12) may then be abbreviated to

$$
\begin{equation*}
M / m=f\left(\varepsilon_{m}\right)=f\left(\varepsilon-\varepsilon_{v}\right) \tag{15}
\end{equation*}
$$

The dilution correction, s_{v}, on the other hand, may be quite large; e.g., if the added volume of reagent is equal to the initial volume of the titrated solution, $V_{0} / m=1$, and $\varepsilon_{v}($ see Table I) $=$ $17 \cdot 3$ millivolts.
3. The precision of the determination is limited ultimately by the inherent variability of the electrodes which appears (multiplied by 2) in ε as an uncertainty which is " absolute," i.e., independent of the magnitude of ε. The consequent absolute uncertainty in the determination of M_{0} is therefore found by differentiating M_{0} partially with respect to $\varepsilon, \varepsilon_{v}$ and m being treated as constants; thus

$$
\begin{equation*}
-\partial M_{0} / \partial \varepsilon=F M_{0} M / R T m=0.04 M_{0} M / m\left(a \mathrm{t} 17^{\circ}\right) \tag{16}
\end{equation*}
$$

and the relative uncertainty per millivolt of uncertainty in ε

$$
\begin{equation*}
-\left(\partial M_{0} / \partial \varepsilon\right) / M_{0}=0.04\left(M_{0} / m-1\right) \tag{17}
\end{equation*}
$$

Thus the relative uncertainty in M_{0} corresponding to an uncertainty of ± 0.5 millivolt in ε is roughly 20% when m is 10% of $M_{0}, 2 \%$ when m is 50% of M_{0}, and $0 \cdot 2 \%$ when m is 90% of M_{0}.

The importance of having removed the limitation upon the value of m is now plain, for the precision of the result increases rapidly
with m. It is still essential, however, that m should be less than M_{0}. If the result of the titration (M_{0}) is approximately known beforehand, m may be made large at once, and a precise result obtained from the measurement of a single potential change. Otherwise the reagent must be added in two or even three stages with corresponding potential measurements, the process being one of successive approximation (see examples below).
4. It is not necessary that ε and m should be measured always from the beginning of the titration. Any stage may be taken as the starting point, for at any stage (so long as the reaction may be regarded as complete), if M^{\prime} is the volume of reagent still required, and the volume of the solution is V^{\prime} c.c., the concentration of the titrated ion is $n M^{\prime} / V^{\prime}$, the potential of the electrode is

$$
\begin{equation*}
E^{\prime}=\mathrm{constant}+R T / F \cdot \log n M^{\prime} \gamma^{\prime} / V^{\prime} \tag{18}
\end{equation*}
$$

and if ε and m are measured from this stage,

$$
\begin{align*}
\varepsilon & =R T / F \cdot \log M^{\prime} \gamma^{\prime} / V^{\prime}-R T / F \cdot \log M \gamma / V \tag{19}\\
& =\varepsilon_{m}+\varepsilon_{v}-\varepsilon_{\gamma} \tag{20}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
M / m=f\left(\varepsilon_{m}\right)=f\left(\varepsilon-\varepsilon_{v}+\varepsilon_{\gamma}\right) \tag{21}\\
V^{\prime} / m=f\left(\varepsilon_{v}\right) \\
\gamma^{\prime} /\left(\gamma-\gamma^{\prime}\right)=f\left(\varepsilon_{\gamma}\right)
\end{array}\right\}
$$

or, when ε_{γ} is negligible,

$$
\begin{equation*}
M / m=f\left(\varepsilon_{m_{u}}\right)=f\left(\varepsilon-\varepsilon_{v}\right) \quad . \quad . \quad . \tag{22}
\end{equation*}
$$

Then, instead of (17), a more general expression for the relative uncertainty in the determination of M_{0} is obtained, $v i z$.,

$$
\begin{align*}
-\frac{1}{M_{0}} \cdot \frac{\partial M_{0}}{\partial \varepsilon} & =-\frac{1}{M_{0}} \cdot \frac{\partial M}{\partial \varepsilon}=0.04 \cdot \frac{M^{\prime} M}{m M_{0}}=0.04\left(1+\frac{M}{m}\right) \frac{M}{M_{0}} \tag{23}\\
& =0.04\left[1+f\left(\varepsilon_{m}\right)\right] M / M_{0} \cdot \tag{24}
\end{align*}
$$

which shows that precision depends on the smallness of M relative to M_{0}, and also up to a point on the smallness of M / m or $f\left(\varepsilon_{m}\right)$. But when ε_{m} is 60 millivolts or more, $f\left(\varepsilon_{m}\right)$ is less than $0 \cdot 1$, and the factor $\left[1+f\left(\varepsilon_{m}\right)\right]$ cannot be much diminished by further increasing ε_{m}, so that precision then depends chiefly on the smallness of M / M_{0}, which is independent of the stage from which m is reckoned. On the other hand, the temperature correction (see Section 5) is proportional to ε, and the correction, ε_{y}, for variation in the activity coefficient increases with m. Hence it is sometimes advantageous to reduce the final values of ε and m somewhat by reckoning them from the second, or even from a third, stage in the titration (see Example 1, Section 10).
5. Temperature Correction.--Table I (as also Tables II and II a) is strictly applicable only at 17°, and the potential change if measured at any other temperature (t°) ought to be corrected to 17° by the addition of the small (positive or negative) correction, ($17-t$) $/ 300$, which, however, is often smaller than the experimental uncertainty in ε.
A moderate constancy of temperature is assumed, for, without knowledge of the temperature coefficients of the electrodes, the effect of any slight change of temperature between the measurements of the two potentials E^{\prime} and E cannot be predicted, and must be included in the experimental uncertainty of ε.

The measurements recorded in Section 10 were obtained without the use of a thermostat.
6. Applicability of the Method.-The method as described is applicable to the titration of univalent ions, e.g., $\mathrm{Ag}^{*}, \mathrm{H}^{\prime}, \mathrm{Cl}^{\prime}, \mathrm{Br}^{\prime}, \mathrm{I}^{\prime}$, OH^{\prime}, etc., to which a corresponding reversible electrode can be found. In the case of a bivalent ion, it would only be necessary to multiply all potentials by 2 .
7. Correction for Adsorption of the Titrated Ion.-In the case of precipitation titrations, the possible adsorption of the titrated ion by the precipitate has to be considered (compare Part II, Section 1). If at the stage (M, V), the fraction (1- θ) of the total amount of the ion is adsorbed, the concentration in the solution will be reduced to $n M \theta / V$, and similarly at the earlier stage (M^{\prime}, V^{\prime}), ($1-\theta^{\prime}$) being the fraction adsorbed, the concentration will be $n M^{\prime} 0^{\prime} / V^{\prime}$, so that in the complete expression for ε (equation 8) an additional term, $\varepsilon_{\theta}=$ $R T / F . \log \theta^{\prime} / \theta$, will be introduced. For small values of $(1-\theta)$, $\varepsilon_{\theta} \approx R T\left(\theta^{\prime}-\theta\right) / F$. If further, as a first approximation, the fraction can be regarded as independent of the concentration of the ion and proportional to the ratio of the amount of precipitate to the volume of solution, so that $(1-\theta) \propto n\left(M_{0}-M\right) / V$, then $\varepsilon_{\theta} \propto n m V_{0} / V V^{\prime}$, which means (a) that ε_{θ} will be greater in titrating stronger solutions, and (b) that it can be minimised by the procedure of Section 4.

It would be possible to eliminate this source of error almost entirely by filtering off and washing the precipitate with small quantities of water, making the necessary allowance in ε_{0} for the increased volume of the solution. In the measurements recorded in Section 10, the correction ε_{θ}, like ε_{γ}, has been neglected, so that it was probably very small in these cases.

Modification for Oxidation \sim Reduction Titrations.-The method can be adapted to oxidation-reduction titrations such as the titration of ferrous or titanous ions. In these cases the dilution correction, ε_{v}, does not occur, but a correction ε_{m}. has to be made for change in
the concentration of the oxidised ion. If m^{\prime} c.c. is the total amount of reagent already added before the further addition of m c.c., and if M c.c. is the unknown amount still required one finds

$$
\begin{equation*}
\varepsilon=\varepsilon_{m}+\varepsilon_{m^{\prime}} . \tag{25}
\end{equation*}
$$

where [compare (21) and (22)]

$$
\left\{\begin{array}{l}
M / m=f\left(\varepsilon_{m}\right)=f\left(\varepsilon-\varepsilon_{m}\right) \tag{26}\\
m^{\prime} / m=f\left(\varepsilon_{m^{\prime}}\right) .
\end{array}\right.
$$

so that a very similar procedure appears to be applicable. In other cases both ε_{v} and ε_{m}. would occur.
9. The Limit of Precision.-The method depends on the condition that the reagent added to the solution reacts completely, removing from the solution a chemically equivalent quantity of the titrated ion. In the strict sense of course this condition would never be fulfilled, but it holds to a close approximation except in the immediate neighbourhood of the end-point. For example, when silver nitrate is added to a solution of a chloride the residual concentration of silver ion, which remains in solution, thereby failing to remove its equivalent of chloride ion from the solution, is inversely proportional to the chloride-ion concentration, inasmuch as the solubility product ($S^{2}=C_{\mathrm{A} 5} \cdot C_{\mathrm{cl}}$) is constant. To a first approximation the consequent relative error in the found value of M is $C_{\Delta \bar{B}} / C_{\mathrm{C} 1}$ or $S^{2} / C^{2}{ }_{c 1}\left(\right.$ i.e., $\left.S^{2} V^{2} / M^{2} n^{2}\right)$.

Now with electrodes of the constancy described above, the potential change is defined to within ± 0.5 millivolt, and the minimum relative uncertainty in the found value of M is $\pm 0.5 F / R T$, or $\pm 0 \cdot 02$, which will be exceeded by the error due to the neglect of $\bar{C}_{\text {Ag }}$ unless $C_{\mathrm{cl}}>7 S$ (i.e., $M>7 S V / n$). This sets a limit to the closeness of approach to the end-point, and therefore to the absolute precision (in terms of concentration) attainable by this method, with such electrodes. The minimum absolute uncertainty will be, in fact, rather more than one-seventh of the solubility of silver chloride ($0.02 \times 7 S$), that is to say, about $\pm 2 \times 10^{-6}$ (i.e., about $\pm 0 \cdot 2 \%$ in the titration of $N / 1000$-chloride solution with a relatively concentrated reagent).

The considerations of this section apply also to other titrations to which the method is applicable, if the appropriate ionic product is inserted in place of $C_{\mathbf{A B}} \cdot C_{\mathrm{C} \text { : }}$ and the limit of absolute precision is estimated accordingly.
For exceptional purposes a somewhat higher order of absolute precision can be obtained with the same electrodes by approaching the end-point more closely, taking into account the incompleteness of the reaction (see Part II).

As a first approximation the correction $S^{2} V^{2} / M^{2} n^{2}$ may be subtracted from the found value of M when the latter is less than about $10 S V / n$, but the limit $7 S V / n$ (about) should not be appreciably overstepped.

10. Results.

A few typical titrations by this method are recorded below. The dilute solutions of known relative strength were prepared in the manner described in a previous paper (loc. cit.). The same pointer galvanometer was used. A good potentiometer and checked standard cell were actually employed, but it should be observed that since the method depends only on differences of potential of the order of $0 \cdot 1$ volt or less, precision better than say, $0 \cdot 1 \%$, either in the standard cell or in the calibration of the potentiometer, is generally superfluous. The electrodes were silver-halide-quinhydrone pairs, as described in the cited paper, so that the uncertainty of a liquid-junction potential had not to be considered. At the same time the use of these electrodes necessitated the doubling of the dilution correction ε_{v}, since the potentials of both electrodes were equally affected by the changing volume of the solution. A small measured quantity of the reagent was, in most cases, added before the first measurement of the potential (Stage 0), as it was found that the initial potential was more trustworthy if obtained in the presence of a trace of precipitate. In the first example, where the temperature was markedly different from 17° and a rather large value of ε was obtained at Stage III, the advantage of reducing ε, by reckoning ε and m from Stage II, is illustrated (indicated by "III-II"; see also examples 5 and 6). Example 6 illustrates one peculiar advantage of this method, viz., that it is independent of the immediate neighbourhood of the end-point. The establishment of a steady and reproducible potential in the case of the iodide electrode is very slow near the end-point, whereas, at a distance from the endpoint, measurements can be made quickly and yield an accurate result.

In the examples, col. 2 shows the total number of c.c. of reagent present; col. 3, the volume added after stage 0 (or between the stages indicated) ; col. 5 , the values of $2 \varepsilon_{v}$ (in millivolts) as obtained from Table I; col. 6, the measured potential, E, in millivolts; col. $7, \varepsilon$, the potential change from stage 0 (or between the stages indicated) ; col. 8, the difference $\varepsilon-2 \varepsilon_{v}=\varepsilon_{m}$; the values in col. 9 are obtained from Table I; col. 10 gives the number of c.c. still required ; col. 11, the successive approximations to M_{0}; and col. 12, the percentage error, Δ.

Example 1. 100 C.c. $N / 100-\mathrm{KCl}$ titrated (at 13°) by $N / 100-\mathrm{AgNO}_{3}$. (Actually known to be equivalent to 98.5 c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / \mathbf{1 0 0 0}$.)
$V_{0}=101$.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Stage.	$M_{0}-M$.	m.	V_{0} / m.	$2 \epsilon_{v}$.	E.	ϵ.	ϵ_{m}.	$f\left(\epsilon_{m}\right)$.	M .	M_{0}.	Δ.
0	1				307.2						
I	11	10	$10 \cdot 1$	$4 \cdot 7$	$299 \cdot 4$	7.8	$3 \cdot 1$	$7 \cdot 6$	76	87	-12
II	71	70	$1 \cdot 44$	$26 \cdot 3$	$250 \cdot 5$	56.7	$30 \cdot 4$	0.421	$29 \cdot 5$	$100 \cdot 5$	+2
III	96	95	1.06	$33 \cdot 1$	184.9	$122 \cdot 3$	89.2	$0 \cdot 0290$	$2 \cdot 75$	98.75	+ 0.25
	Correcting to $17^{\circ}, \epsilon_{17^{\circ}}=123.9$						$90 \cdot 8$	0.0272	$2 \cdot 58$	98.58	$+0.08$
III-II	96	25		6.8		$65 \cdot 6$	58.8	$0 \cdot 105_{2}$	$2 \cdot 63$	98.63	$+0.13$
			rrectin	to 1	, $\epsilon_{17^{\circ}}$	66.5	59.7	$0 \cdot 1011$	2.53	98.53	$+0.03$

Example 2. 100 C.c. $N / 400-\mathrm{KCl}$ titrated (at $16 \cdot 5^{\circ}$) by $N / 100-$ AgNO_{3}.
(Actually known to be equivalent to $24 \cdot 62$ c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / 1000$.)
$V_{0}=101$.

Stage.	$M_{0}-M .$	m.	V_{0} / m.	$2 \epsilon \boldsymbol{v}$.	$E .$	ϵ.	ϵ_{m}.	$f\left(\epsilon_{m}\right)$.	M.	M_{0}.		Δ.
1	11	10	$10 \cdot 1$	$4 \cdot 7$	$233 \cdot 8$	19	$14 \cdot 3$	1.30	13			$2 \cdot 5$
II	23	22	$4 \cdot 6$	9.8	175	$77 \cdot 3$	$67 \cdot 5$	$0 \cdot 072$	$1 \cdot 585$	24.585		$1 \cdot 4$

Example 3. 1000 C.c. $N / 1000-\mathrm{KCl}$ titrated (at 14.5°) by $N / 100$ AgNO_{3}.
(Actually known to be equivalent to 98.5 c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / 2500$.)
$V_{0}=1010$.

Stage.	$M_{0}-M$	m.	V_{0} / m	2	E.	E.	ϵm.	$f(\epsilon m)$	\boldsymbol{M}.	M_{0}.	Δ.
${ }_{0}$	10				222.0						
II	40	30	33.7	1.5	$210 \cdot 4$	11.6	$10 \cdot 1$	$2 \cdot 01$	$60 \cdot 3$	$100 \cdot 3$	$+1.8$
II	85	75	$13 \cdot 5$	3.6	$172 \cdot 2$	$49 \cdot 8$	46.2	$0 \cdot 187$	$14 \cdot 0$	$99 \cdot 0$	- 0%
Correcting to $17^{\circ}, \epsilon_{17}{ }^{\circ}=50.2 \quad 46.6$ 0.1835 $\quad 13.75 \quad 98.75 \quad$ i\% 0.25											

Example 4. 100 C.c. $N / 1000-\mathrm{KCl}$ titrater (at 20°) by $N / 1000-$ AgNO_{3}.
(Actually known to be equivalent to 98.5 c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / 4000$.)
$V_{0}=105$.

Example 5. 500 C. c. of $N / 5000-\mathrm{KBr}$ titrated (at 19°) by $N / 1000-\mathrm{AgNO}_{3}$. (Actually known to be equivalent to $90 \cdot 8$ c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / \mathbf{1 0 , 0 0 0}$.) $V_{0}=500$.

Stage.	- $-M$.	m. $\quad V_{0} / m$.		$2 \epsilon_{v}$.		6.	$\boldsymbol{\epsilon} \boldsymbol{m}$.	$f\left(\epsilon_{m}\right)$.	\boldsymbol{M}.	M_{0}.	Δ.	
0	0			$340 \cdot 5$								
I	50	50	10		$4 \cdot 7$	$315 \cdot 2$	$25 \cdot 3$	$20 \cdot 6$	$0 \cdot 78$	39	89	-2
II	80	80	$6 \cdot 25$	$7 \cdot 4$	$279 \cdot 1$	$61 \cdot 4$	$54 \cdot 0$	$0 \cdot 1305$	$10 \cdot 44$	90.44	-9.4	
III	88	88	$5 \cdot 7$	$8 \cdot 1$	$243 \cdot 7$	96.8	$88 \cdot 7$	$0 \cdot 0296{ }_{5}$	$2 \cdot 61$	90.61	-0.2	
III-I	88	Correcting to $17^{\circ}, \epsilon_{17^{\circ}}=96.2$					$88 \cdot 1$	0.0304	$2 \cdot 68$	$90 \cdot 68$	-0.13	
		38		$3 \cdot 4$	$\epsilon_{19}{ }^{\circ}$	71.5	$68 \cdot 1$	0.0702	$2 \cdot 67$	$90 \cdot 67$	-0.14	
		Correcting to $17^{\circ}, \epsilon_{17^{\circ}}=71.0$					$67 \cdot 6$	0.0718	$2 \cdot 73$	$90 \cdot 73$	-0.08	
III-II	88	8		orre	ϵ_{m}	19°)	$34 \cdot 7$	0.333	$2 \cdot 66$	$90 \cdot 66$	-0.15	

Example 6. 1000 C.c. of $N / 10,000-\mathrm{KI}$ titrated (at $19 \cdot 5^{\circ}$) by $N / 1000-$ AgNO_{3}.
(Actually known to be equivalent to $111 \cdot 1$ c.c. of AgNO_{3}, but titrated as if only known to be stronger than $N / 20,000$.)
$V_{0}=1000$.

Addendum.

11. Although ε_{v} may be obtained from V_{0} / m or V^{\prime} / m as explained on p . 846, it is desirable to have a table which reads directly and not inversely; the function derived from equation (10) is more suitable for tabulation in terms of m / V_{0} (or m / V^{\prime}) than in terms of V_{0} / m, and Table II gives ε_{v} in millivolts for values of m / V_{0} up to $2 \cdot 1$, i.e., over the range usually required. When, as is often the case, V_{0} is a simple number such as $10,20,50$, the ratio m / V_{0} is readily evaluated, and Table II provides the easiest way of "correcting to constant volume" all the measured potentials. Alternatively, Table $\mathrm{IIA}_{\mathrm{A}}$ is more convenient when V (instead of V_{0} or V^{\prime}) is a simple number.
12. More generally, the measured potentials may readily be " corrected " to any arbitrarily chosen simple volume by means of Tables II and IIA. For example, if 73.7 c.c. of solution are titrated and $20,35,7$, and 1.5 c.c. are the successive additions of reagent, the five measured potentials can be "corrected" to 100 c.c. volume as follows, the correction when positive being made in the same direction as the change of potential during the titration.
$\left.\begin{array}{ccccc} & \text { Volume, } & & \begin{array}{c}(100-V) \\ \text { Stage. } \\ V \text { e.c. }\end{array} & \begin{array}{c}\text { Corr. } \\ (100-V) .\end{array} \\ 0 & 73 \cdot 7 & +26.3 & +0.263 & \begin{array}{c}\text { millivolts). } \\ +7.6 \\ \text { I }\end{array} \\ 93.7 & +6.3 & +0.063 & +1.6\end{array}\right\}$ from Table IIA.

Table I.

$$
f(\varepsilon)=\frac{1}{2}(\operatorname{coth} F \varepsilon / 2 R T-1) .
$$

Table I (contd.).

ϵ.	- 0	-1.	-2.	-3.	-4.	-5.	-6.	7.	. 8.	$\cdot 9$.
70	0.0647_{5}	$0 \cdot 0644_{5}$	$0 \cdot 0642$	0.0639_{5}	$0 \cdot 0636_{5}$	0.0634	$0 \cdot 0631$	$0 \cdot 0628$	0.0626	0.0623
71	0.0620_{5}	$0 \cdot 0618{ }^{\text {b }}$	0.0615	$0 \cdot 0612_{5}$	$0 \cdot 0610$	0.0607_{5}	$0 \cdot 0605$	$0 \cdot 06025$	0.0600	$0 \cdot 05975$
72	0.0594	0.0592	0.0589	0.0587°	$0 \cdot 0584_{5}$	$0 \cdot 0582_{5}$	$0 \cdot 0580$	0.0577_{5}	0.0575	$0 \cdot 0572$ \%
73	0.0570°	$0 \cdot 05675$	0.0565_{5}	$0 \cdot 0563$	$0 \cdot 0560$ s	$0 \cdot 0558$	$0 \cdot 0556$	0.0553	0.0551	0.0549
74	$0 \cdot 0546_{5}$	0.0544	0.0542	0.0539^{5}	0.0537	0.0535	0.0533	0.0530_{5}	$0 \cdot 0528$	$0 \cdot 0526$
75	0.0524	$0 \cdot 0522$	0.0519	0.0517_{5}	$0 \cdot 0515$	$0 \cdot 0513$	0.0511	0.0509	$0 \cdot 0506_{5}$	$0 \cdot 0504{ }_{5}$
76	$0 \cdot 0502_{5}$	$0 \cdot 0500^{5}$	$0.0498{ }^{\text {b }}$	0.0496°	0.0494	0.0492	$0 \cdot 0490$	$0 \cdot 0488$	$0 \cdot 0486$	$0 \cdot 0484$
77	$0.0481{ }^{\text {b }}$	0.0479	$0 \cdot 0477{ }_{5}$	0.0475_{5}	$0 \cdot 0473$	$0 \cdot 04715$	0.0470	0.0468	$0 \cdot 0466$	0.0464
78	0.0462	$0 \cdot 0460$	$0.0458^{\text {b }}$	$0.0456{ }^{\text {b }}$	$0.0454{ }^{5}$	$0 \cdot 045{ }^{\text {5 }}$	0.04505	$0 \cdot 0448{ }_{5}$	0.0447	0.0445
79	$0 \cdot 0443$	$0 \cdot 0441$	$0.0439{ }_{5}$	0.0437_{5}	0.0435	0.0434	0.0432	0.0430_{5}	$0 \cdot 0428$	$0.0426{ }_{5}$
80	0.0425	0.0423	$0 \cdot 0421_{5}$	$0 \cdot 0419^{5}$	0.0418	0.0416	$0 \cdot 0.414_{5}$	$0 \cdot 0412{ }_{5}$	0.0411	0.04093
81	$0 \cdot 0407^{\text {B }}$	0.0406	$0 \cdot 0404$	0.04025	0.0401	0.0399	0.0397_{5}	$0 \cdot 0396$	0.03945	$0.039{ }_{5}$
82	0.0391	0.0389_{5}	0.0388	$0.038{ }^{\circ}$	$0 \cdot 0384_{5}$	$0 \cdot 0383$	0.03815	0.0380	0.0378	0.0376
83	0.0375	0.0373 s	0.0372	0.0370_{5}	$0 \cdot 0369$	0.0367_{5}	0.0366	$0 \cdot 0364_{5}$	0.0363	0.03615
84	0.0360	0.0358_{5}	0.0357	0.0355_{5}	$0 \cdot 0354$	0.0352_{5}	0.0351	0.0349_{5}	0.0348	0.0346_{5}
8.5	$0 \cdot 03455_{5}$	0.0341	0.0342_{5}	0.0341	$0 \cdot 03395$	$0 \cdot 0335$	$0 \cdot 0337$	$0.0335{ }_{5}$	0.0334	$0.0332{ }_{5}$
86	$0.0331{ }^{\text {b }}$	0.0330	0.0328_{5}^{6}	0.0327	0.0326^{6}	0.0324_{5}	0.0323	0.0322	0.0320_{5}	0.0319
87	0.0318	0.0316_{5}	0.0315	0.0314	$0 \cdot 0312$	0.0311_{5}	$0 \cdot 0310$	0.0309	0.03075	0.03065
88	$0 \cdot 0305$	0.0304	$0.0302{ }_{5}$	0.03015	$0 \cdot 0300$	$0 \cdot 029{ }^{\circ}$	().0297	$0.0296{ }_{5}$	0.0295	(1).0294
89	$0 \cdot 0292{ }^{\text {s }}$	$0 \cdot 02915$	0.0290_{5}	0.0289	0.0288	$0 \cdot 0.287$	1).0285	0.0284^{3}	0.0283	0.0289
90	$0 \cdot 0281$	$0 \cdot 0280$	0.0278	0.0277_{5}	0.0276	$0 \cdot 0275$	$0 \cdot 0274$	0.0273	0.0272	$0.027)_{5}$
91	$0 \cdot 0269_{5}$	$0 \cdot 0268$	0.0267_{5}	$0 \cdot 0266_{5}$	0.0265	$0 \cdot 0264$	$0 \cdot 0263$	$0 \cdot 0262$	$0 \cdot 0261$	0.0260
92	0.0259	0.0257_{5}	0.0256_{5}	$0 \cdot 0255_{8}$	$0 \cdot 02545$	0.0253_{5}	$0 \cdot 025{ }^{5}$	0.02515	0.020^{5}	$0 \cdot 0249_{5}$
93	$0.0248{ }^{5}$	0.0247_{5}	0.0246_{5}	0.0245_{5}	0.0244^{5}	$0 \cdot 0243{ }_{5}$	0.0242^{5}	$0 \cdot 0241{ }^{5}$	$0 \cdot 0240^{\circ}$	$0 \cdot 02395$
94	$0.0238{ }^{\text {b }}$	0.0237_{s}	$0.0236{ }_{5}$	0.0235_{5}	$0.0234{ }_{5}$	0.0233_{5}	0.0232^{5}	0.02315	$0 \cdot 0230_{5}$	0.0230
95	$0 \cdot 0229$	0.0228	0.0227	$0 \cdot 0226$	0.0225	0.0224	$0 \cdot 0223{ }^{\text {g }}$	$0 \cdot 0222_{8}$	0.0221_{5}	0.0220_{3}
96	$0 \cdot 0219$	$0 \cdot 0219$	(1.0218	$0 \cdot 0217$	$0 \cdot 0216$	$0 \cdot 0215$	0.0214_{5}	0.0213^{8}	0.0212^{5}	0.02115
97	$0 \cdot 0211$	0.0210	0.0209	0.0208_{5}	$0 \cdot 0207_{5}$	$0 \cdot 0206_{5}$	0.0206	$0 \cdot 0205$	0.0204	$0 \cdot 0203_{5}$
98	$0 \cdot 0202_{5}$	$0 \cdot 0201{ }_{5}$	$0 \cdot 0201$	0.0200°	0.0199	$0 \cdot 0198$	0.01978	$0.0196{ }_{6}$	0.0196	0.0195
99	0.0194_{5}	$0 \cdot 0193{ }_{5}$	$0 \cdot 0193$	0.0192	0.0191	$0 \cdot 0190_{5}$	$0 \cdot 0189^{5}$	0.0189	0.0188	0.0187_{6}
ϵ.	+0.	$+1$	$+2$.	$+3$.	+4.	$+5$.	+6.	+7.	$+8$.	$+9$.
100	$0 \cdot 0186{ }_{5}$	$0 \cdot 0179$	$0 \cdot 0172$	0.0165	0.0158	$0 \cdot 0152$	0.0146	0.0140_{5}	0.0135	0.01295
110	0.0124_{5}	$0 \cdot 0119_{5}$	$0 \cdot 0114_{5}$	$0 \cdot 0110$	0.0105_{5}	$0 \cdot 01018$	$0 \cdot 0097{ }_{5}$	$0 \cdot 0093{ }_{5}$	0.0090	0.0086
120	$0 \cdot 0083$	$0 \cdot 0079$	$0 \cdot 0076$	0.0073	0.0070^{5}	$0 \cdot 0068$	$0 \cdot 0065$	$0 \cdot 006{ }^{5}$	0.0060	0.0057_{5}
130	0.0055_{5}	0.0053_{5}	$0 \cdot 0051$	0.0049	$0 \cdot 0047$	$0 \cdot 0045_{5}$	$0 \cdot 0043$	0.0042	$0 \cdot 0040$	$0.0038{ }_{5}$
140	0.0037	0.0035	0.0034_{5}	$0 \cdot 0033$	$0 \cdot 00315$	0.0030_{5}	$0 \cdot 0029$	$0 \cdot 0028$	$0 \cdot 0027$	0.0026
100	$0 \cdot 0025$	$0 \cdot 0024$	$0 \cdot 0023$	0.0022	0.0021	$0 \cdot 00205$	0.00195	$0 \cdot 0019$	$0 \cdot 0018$	0.0017_{5}
160	0.0016_{5}	0.0016	0.0015	0.0015	0.0014.	0.0013_{5}	0.0013	0.0012_{5}	$0 \cdot 0.012$	$0.0011{ }_{3}$
170	0.0011	0.0010_{5}	0.0010^{5}	$0 \cdot 0010$	$0 \cdot 00695$	0.0009	0.0009	0.0008 。	0.0008	0.0008
180	0.0007_{s}	0.0007	$0 \cdot 0007$	$0 \cdot 0006_{5}$	$0 \cdot 0006_{5}$	0.0006	0.0006	0.00055	0.0005	$0 \cdot 0005$
190	$0 \cdot 0005$	$0 \cdot 0005$	$0 \cdot 0004_{5}$	$0 \cdot 0004_{5}$	0.0004_{5}	0.0004	$0 \cdot 0004$	$0 \cdot 0004$	$0 \cdot 0003_{5}$	$0 \cdot 0003_{5}$

Table II.

$$
\begin{gathered}
\varepsilon_{v}=f^{-1}(1 / x)=R T / F . \log (1+x) . \\
x=m / V^{\prime} \text { or } m / V_{0} ; T=290^{\circ} \text { Abs. }
\end{gathered}
$$

x.	-00.	-01.	-02.	-03.	04.	-05.	-06.	- 07.	-08.	09.
$0 \cdot 0$	$0 \cdot 00$	$0 \cdot 25$	$0 \cdot 5$	$0 \cdot 74$	$0 \cdot 98$	$1 \cdot 2_{2}$	$1 \cdot 48$	$1 \cdot 6.9$	$1 \cdot 9.2$	${ }^{2} \cdot 1_{5}$
$0 \cdot 1$	$2 \cdot 38$	$2 \cdot 6{ }_{1}$	$2 \cdot 8_{3}$	$3 \cdot 0_{6}$	$3 \cdot{ }^{8}$	$3 \cdot{ }_{9}$	$3 \cdot 71$	$3 \cdot 9$	$4 \cdot 14$	4.3:
$0 \cdot 2$	$4 \cdot 56$	4.7\%	$4 \cdot 97$	$5 \cdot 18$	$5 \cdot 38$	$5 \cdot 58$	$5 \cdot 78$	$5 \cdot 98$	$6 \cdot 17$	-3:
$0 \cdot 3$	$6 \cdot 5$	$6 \cdot 75$	$6 \cdot 94$	$7 \cdot]_{3}$	$7 \cdot 32$	$7 \cdot 5$	$7 \cdot 69$	$7 \cdot 87$	$8 \cdot 05$	$8 \cdot \underline{3}$
$0 \cdot 4$	$8 \cdot 41$	$8 \cdot 5$	$8 \cdot 77$	$8 \cdot 94$	$9 \cdot 12$	$9 \cdot 29$	$9 \cdot 4_{6}$	$9 \cdot 6$	$9 \cdot 8$	$9 \cdot 97$
$0 \cdot 5$	$10 \cdot 1_{4}$	$10 \cdot 3$	$10 \cdot 47$	$10 \cdot 6$	$10 \cdot 79$	$10 \cdot 96$	$11 \cdot 1_{2}$	$11 \cdot 28$	$11 \cdot 4_{4}$	$11 \cdot 59$
$0 \cdot 6$	$11 \cdot 7{ }_{5}$	$11 \cdot 9_{1}$	$12 \cdot 0{ }_{6}$	$12 \cdot 2_{1}$	$12 \cdot 3$ \%	$12 \cdot 5$	$12 \cdot 6{ }_{7}$	$12 \cdot 8$	$12 \cdot 97$	$13 \cdot 12$
7	$13 \cdot 27$	$13 \cdot 4_{1}$	$13 \cdot 5{ }_{6}$	$13 \cdot 7$	$13 \cdot 85$	$13 \cdot 99$	$14 \cdot 13$	$14 \cdot 2$	$14 \cdot 42$	$14 \cdot 5$
$0 \cdot 8$	$14 \cdot 6$	$14 \cdot 8$	$14 \cdot 97$	$15 \cdot 1_{1}$	$15 \cdot{ }_{4}^{4}$	$15 \cdot 38$	$15 \cdot 5_{1}$	$15 \cdot 65$	$15 \cdot 78$	15.91
$0 \cdot 9$	$16 \cdot 0_{5}$	$16 \cdot 1_{8}$	$16 \cdot 3_{1}$	16.4	$16 \cdot 5_{7}$	$16 \cdot 7$	$16 \cdot 8$	$16.9{ }_{5}$	$17 \cdot 08$	$17 \cdot 2$
- 0	$17 \cdot 3_{3}$	$17 \cdot 4_{5}$	$17 \cdot 5_{8}$	17.7	$17 \cdot 8_{2}$	$17 \cdot 95$	$18 \cdot 0_{7}$	$18 \cdot 19$	$18 \cdot 3_{1}$	$18 \cdot 45$
$1 \cdot 1$	$18 \cdot 5$	$18 \cdot 67$	$18.7{ }_{9}$	$18 \cdot 9$	$19 \cdot 0{ }_{2}$	$19 \cdot{ }_{4}$	$19 \cdot{ }_{5}$	$19 \cdot 37$	$19 \cdot 4{ }_{8}$	$19 \cdot 6$
$1 \cdot 2$	$19 \cdot 7_{1}$	$19 \cdot 8$	19.94	${ }^{20} 0 \cdot 0_{5}$	${ }^{20} 0^{-1}$	20.97	$\stackrel{20.3}{8}$	$20 \cdot 49$	$20 \cdot 6$	${ }^{20.71}$
$1 \cdot 3$	$20 \cdot 8{ }_{2}$	20.93	$21 \cdot 04$	$21 \cdot 15$	$21 \cdot{ }^{5}$	$21 \cdot 36$	$21 \cdot 47$	$21 \cdot 57$	21.68	21.78
$1 \cdot 4$	21.89	21.99	$22 \cdot 09$	29.2	$22 \cdot 3$	$22 \cdot 4$	2.25	$22 \cdot 61$	$22 \cdot 71$	$22 \cdot 81$
$1 \cdot 5$	$\underline{2} \cdot 9.9$	$23 \cdot 01$	$23 \cdot 1$	$23 \cdot{ }_{1}$	$23 \cdot 3$	$23 \cdot 4$	$93 \cdot 5$	$23 \cdot 6$	$23 \cdot 69$	$23 \cdot 7_{9}$
$1 \cdot 6$	$\stackrel{3}{2} 8_{9}$	$23 \cdot 98$	$24 \cdot 0$	$24 \cdot 17$	$24 \cdot 2_{7}$	$\stackrel{24}{ } \cdot 3_{6}$	${ }^{2} 4 \cdot 4_{6}$	${ }^{24 \cdot 5} 5_{5}$	$24 \cdot 65$	$\stackrel{24}{24} 7$
1.7	$24 \cdot 83$	24.92	$25 \cdot 0_{2}$	$25 \cdot 11$	$25 \cdot 2$	$25 \cdot 29$	$25 \cdot 38$	$25 \cdot 47$	$25 \cdot 5$	$25 \cdot 6$
$1 \cdot 8$	$25 \cdot 7{ }_{4}$	$25 \cdot 8_{3}$	25.92	$26 \cdot 0_{1}$	$26 \cdot 1$	$26 \cdot 1_{3}$	$26 \cdot 9$	$26 \cdot 36$	$26 \cdot 4$	${ }^{26} \cdot 5_{3}$
$1 \cdot 9$	$\underline{26} 6$.	26.7	$26 \cdot 7$	$\because 6 \cdot 88$	$26 \cdot 9.9$	$27 \cdot 0$	$27 \cdot 1{ }_{3}$	27-2 ${ }_{1}$	$27 \cdot 3$	$27 \cdot 38$
$2 \cdot 0$	$27 \cdot 4_{7}$	$27 \cdot 5$	$27 \cdot 6$	$27 \cdot 7_{1}$	$27 \cdot 8$	27.88	$27 \cdot 96$	$28 \cdot 0_{4}$	28.19	28:2

This table gives ε_{v} (in millivolts), the change in the potential E due to the dilution of the solution from V^{\prime} c.c. to $\left(V^{\prime}+m\right)$ c.c., the change being in the same direction as the change due to adding the reagent.

Table IIa.

$$
\begin{gathered}
\varepsilon_{v}=f^{-1}(\mathrm{l} / x-\mathrm{l})=-R T / F \cdot \log (\mathrm{l}-x) \\
x=m / V ; T=290^{\circ} \mathrm{Abs} .
\end{gathered}
$$

x.	-00.	$\cdot 01$.	-02.	-03.	04.	-05.	-06.	. 07.	. 08	.09.
$0 \cdot 0$	$0 \cdot 00$	$0 \cdot 25$	$0 \cdot 5$	$0 \cdot 76$	$1 \cdot 0_{2}$	$1 \cdot 2_{8}$	$1 \cdot 5$	$1 \cdot 81$	$2 \cdot 08$	$2 \cdot 36$
$0 \cdot 1$	$2 \cdot 6$	$2 \cdot 91$	$3 \cdot 2$	$3 \cdot 4_{8}^{6}$	$3 \cdot 7{ }_{7}$	$4 \cdot 0{ }_{6}$	$4 \cdot 36$	$4 \cdot 6{ }_{6}$	$4 \cdot 96$	$5 \cdot 2$
$0 \cdot 2$	$5 \cdot 58$	$5 \cdot 89$	$6 \cdot{ }_{1}$	$6 \cdot{ }^{3}$	$6 \cdot 8{ }_{6}$	$7 \cdot 19$	$7 \cdot 5$	$7 \cdot 87$	$8 \cdot 21$	$8.5{ }_{6}$
3	$8 \cdot 92$	$9 \cdot 28$	$9 \cdot 6{ }_{4}$	$10 \cdot 0_{1}$	$10 \cdot 3{ }_{9}$	$10 \cdot 77$	$11 \cdot 1{ }_{6}$	11.5	$11 \cdot 9$	$12 \cdot 3{ }_{6}$
$0 \cdot 4$	$12.7{ }_{7}$	13.19	$13 \cdot 6$	$14 \cdot 0{ }_{5}$	14.5	14.95	$15 \cdot 4$	$15 \cdot 87$	$16 \cdot 35$	$16 \cdot 8$
0.5	$17 \cdot 3_{3}$	$17 \cdot 83$	$18 \cdot 3$	$18 \cdot 3_{8}$	$19 \cdot 4{ }_{1}$	$19.9{ }_{6}$	20.5	$21 \cdot 1$	$21 \cdot 69$	22.29

This table gives ε_{v} (in millivolts), the change in the potential E due to dilution of the solution from $(V-m)$ c.c. to V c.c., the change being in the same direction as the change due to adding the reagent.
13. There is an alternative way of allowing for the change in the volume of the solution, which is of interest in that it completes the connexion between the simple method now described and the more refined methods of Part II. Equation (19) may be written,

$$
\begin{align*}
& \varepsilon=R T / F . \log V(M+m) / M(V-m) \\
& =R T / F \cdot \log [1+m(V+M) / M(V-m)] \\
& \text { i.e., } \quad f(\varepsilon)=r \tag{28}\\
& \text { where } \quad r=M(V-m) / m(V+M) \tag{29}\\
& \text { whence } \quad M=r m /[1-m(1+r) / V] \tag{30}
\end{align*}
$$

[compare Part II, equation (19)], which reduces to equation (7) when m / V is negligible (constant volume). This way of allowing for the changing volume of the solution seems, however, to be less simple and expeditious than the application of the correction ε_{v} to the measured potential change (Sections 2 and 11), or the correction of the measured potentials according to Sections 11 and 12.

[^0] Addendum, not including Table I, added, December 8th, 1927.]

[^0]: The University of Manchester.
 [Reccived, October 24th, 1927.

